Combinatorial Functions
EqualitySampler.stirlings2
— Functionstirlings2(n::Integer, k::Integer) -> Any
Compute the Stirlings numbers of the second kind. The EqualitySampler.ExplicitStrategy
(default) uses an explicit loop and is computationally more efficient but subject to overflow, so using BigInt is advised. The EqualitySampler.RecursiveStrategy
uses recursion and is mathematically elegant yet inefficient for large values.
EqualitySampler.logstirlings2
— FunctionCompute the logarithm of the Stirlings numbers of the second kind with an explicit formula.
EqualitySampler.stirlings2r
— Functionstirlings2r(n::T, k::T, r::T) where T <: Integer
stirlings2r(n::T, k::T, r::T, ::Type{EqualitySampler.ExplicitStrategy}) where T <: Integer
stirlings2r(n::T, k::T, r::T, ::Type{EqualitySampler.RecursiveStrategy}) where T <: Integer
Compute the r-Stirlings numbers of the second kind. The EqualitySampler.ExplicitStrategy
(default) uses an explicit loop and is computationally more efficient but subject to overflow, so using BigInt is advised. The EqualitySampler.RecursiveStrategy
uses recursion and is mathematically elegant yet inefficient for large values.
EqualitySampler.logstirlings2r
— Functionlogstirlings2r(n::T, k::T, r::T) where T <: Integer
Computes the logarithm of the r-stirling numbers with an explicit formula.
EqualitySampler.unsignedstirlings1
— FunctionCompute the absolute value of the Stirlings numbers of the first kind. The EqualitySampler.ExplicitStrategy
(default) uses an explicit loop and is computationally more efficient but subject to overflow, so using BigInt is advised. The EqualitySampler.RecursiveStrategy
uses recursion and is mathematically elegant yet inefficient for large values.
EqualitySampler.logunsignedstirlings1
— Functionlogunsignedstirlings1(n::Integer, k::Integer) -> Any
Compute the logarithm of the absolute value of the Stirlings numbers of the first kind.
EqualitySampler.bellnum
— FunctionComputes the Bell numbers.
EqualitySampler.bellnumr
— FunctionComputes the $r$-Bell numbers.
EqualitySampler.logbellnumr
— FunctionComputes the logarithm of the $r$-Bell numbers.
EqualitySampler.PartitionSpace
— Typestruct PartitionSpace{T<:Integer, P<:EqualitySampler.AbstractPartitionSpace}
# constructor
PartitionSpace(k::T, ::Type{U} = EqualitySampler.DistinctPartitionSpace)
A type to represent the space of partitions. EqualitySampler.AbstractPartitionSpace
indicates whether partitions should contains duplicates or be distinct. For example, the distinct iterator will return [1, 1, 2]
but not [2, 2, 1]
and [1, 1, 3]
, which are returned when P = EqualitySampler.DuplicatedPartitionSpace
.